Adipocyte-specific glucocorticoid inactivation protects against diet-induced obesity.

نویسندگان

  • Erin E Kershaw
  • Nicholas M Morton
  • Harveen Dhillon
  • Lynne Ramage
  • Jonathan R Seckl
  • Jeffrey S Flier
چکیده

Local glucocorticoid (GC) action depends on intracellular GC metabolism by 11beta-hydroxysteroid dehydrogenases (11betaHSDs). 11betaHSD1 activates GCs, while 11betaHSD2 inactivates GCs. Adipocyte-specific amplification of GCs through transgenic overexpression of 11betaHSD1 produces visceral obesity and the metabolic syndrome in mice. To determine whether adipocyte-specific inactivation of GCs protects against this phenotype, we created a transgenic model in which human 11betaHSD2 is expressed under the control of the murine adipocyte fatty acid binding protein (aP2) promoter (aP2-h11betaHSD2). Transgenic mice have increased 11betaHSD2 expression and activity exclusively in adipose tissue, with the highest levels in subcutaneous adipose tissue, while systemic indexes of GC exposure are unchanged. Transgenic mice resist weight gain on high-fat diet due to reduced fat mass accumulation. This improved energy balance is associated with decreased food intake, increased energy expenditure, and improved glucose tolerance and insulin sensitivity. Adipose tissue gene expression in transgenic mice is characterized by decreased expression of leptin and resistin and increased expression of adiponectin, peroxisome proliferator-activated receptor gamma, and uncoupling protein 2. These data suggest that reduction of active GCs exclusively in adipose tissue is an important determinant of a favorable metabolic phenotype with respect to energy homeostasis and the metabolic syndrome.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brown adipose tissue derived VEGF-A modulates cold tolerance and energy expenditure

We recently reported that local overexpression of VEGF-A in white adipose tissue (WAT) protects against diet-induced obesity and metabolic dysfunction. The observation that VEGF-A induces a "brown adipose tissue (BAT)-like" phenotype in WAT prompted us to further explore the direct function of VEGF-A in BAT. We utilized a doxycycline (Dox)-inducible, brown adipocyte-specific VEGF-A transgenic o...

متن کامل

IKKβ Is Essential for Adipocyte Survival and Adaptive Adipose Remodeling in Obesity

IκB kinase β (IKKβ), a central coordinator of inflammatory responses through activation of nuclear factor-κB (NF-κB), has been implicated as a critical molecular link between inflammation and metabolic disorders; however, the role of adipocyte IKKβ in obesity and related metabolic disorders remains elusive. Here we report an essential role of IKKβ in the regulation of adipose remodeling and adi...

متن کامل

Inactivation of SOCS3 in leptin receptor-expressing cells protects mice from diet-induced insulin resistance but does not prevent obesitya

Therapies that improve leptin sensitivity have potential as an alternative treatment approach against obesity and related comorbidities. We investigated the effects of Socs3 gene ablation in different mouse models to understand the role of SOCS3 in the regulation of leptin sensitivity, diet-induced obesity (DIO) and glucose homeostasis. Neuronal deletion of SOCS3 partially prevented DIO and imp...

متن کامل

EBF2 promotes the recruitment of beige adipocytes in white adipose tissue.

OBJECTIVE The induction of beige/brite adipose cells in white adipose tissue (WAT) is associated with protection against high fat diet-induced obesity and insulin resistance in animals. The helix-loop-helix transcription factor Early B-Cell Factor-2 (EBF2) regulates brown adipose tissue development. Here, we asked if EBF2 regulates beige fat cell biogenesis and protects animals against obesity....

متن کامل

Preadipocyte 11beta-hydroxysteroid dehydrogenase type 1 is a keto-reductase and contributes to diet-induced visceral obesity in vivo.

Glucocorticoid excess promotes visceral obesity and cardiovascular disease. Similar features are found in the highly prevalent metabolic syndrome in the absence of high levels of systemic cortisol. Although elevated activity of the glucocorticoid-amplifying enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) within adipocytes might explain this paradox, the potential role of 11beta-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes

دوره 54 4  شماره 

صفحات  -

تاریخ انتشار 2005